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1. TINTRODUCTION

Modern electronic systems must frequently operate in hostile electro-
magnetic environments dominated by unwanted signals., The unwanted signals
are referred to as interference whether or not they cause unacceptable
system performance. Undesirable electromagnetic interactions can occur
between different 1) systems, 2) subsystems within a system, 3) equipments

within a subsysterm, and 4) components within an equipment., Electromagnetic

compatibility (EMC) exists when, even in the presence of the upwanted signals,

the equipments, subsystems, and systems perform together in an acceptable
manner. In other words, if unintentional electromagnetic radiations and/or
responses do not sufficiently degrade system performance, EMC is said to

apply. On the other hand, electromagnetic interference (EMI) results when

acceptable performance is prevented because of the interfering signals.
The term, interference, is seen to have a dual meaning because it refers to
both the unwanted signals and their effect.

In order to determine acceptable performance, a performance criterion

is needed which provides a standard, rule, test, or measure for judging

quality of operation. Depending upon the specific application and the type
of system, subsystem, or equipment involved, different criteria are appro- 1
priate. Several examples are cited below. In speech communication systems,
where intelligibility is the important factor, two widely used criteria are
articulation score and articulation index. In television and graphics dis-
play systems, resolution is often chosen as the performance criterion. Bit

error rate and probability of error are commonly used criteria in digital

communication systems. Performance criteria used in analog data systems

are mean square error, peak error, and average absolute error. With respect




to radar systems, the probability of detection for a specified false alarm
probability is a frequently used criterion., In every case, once a perfor-

mance criterion has been chosen, acceptable performance can be specified by

selecting an allowable range of values for the performance criterion. This
range is usually based upon mission requircments.,

In the evaluation of system performance, the desired and interfering
signals are usually characterized in terms of convenient parameters such
as average power, peak amplitude, energy, and peak power. The EMI performince
curve is a plot of the selected performance criterion versus some function

of the desired and interfering signal parameters. For example, in Figure 1
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Figure 1 EMI performance curve for a specch communication
system.




is shown a typical EMI performance curve for a speech communicatlon systeam.
For this system the performance c¢riterion selected is the articulation scorc,
AS, which gives the percentage of words correctly interpreted in a listener
panel test. The average desired signal power, S, and the average interfering
power, I, are the desired and interfering signal parameters suitable for this
plot. The EM1 performance curve consists of a plot of the articulation score
versus the signal-to-interference ratio, S/L. Use of the signal-to-interferencc
ratio implies that performance is independent of the absolute levels of S and
I. Rather, it 1is their ratio which determines the amount of intelligibility.
As would be expected, the articulation score is seen to be an increasing
function of the signal-to-interference ratio until, for large euough values
of S relative to 1, essentially perfect intelligibility is achieved.

Given the EMI performance curve, it is possible to specify the ranpe
of operation over which acceptable performance occurs. The performance
threshold is that value of the performance criterion which demarcates the
regions of acceptable and unacceptable pertormance. These regions, of course,
gre Jdetermined in accordance with mission requirements. By way of example,
thie performance threshold in Figure 1 has been set at an articulation score
equal to 60%. This implies, for the application of interest, that zcceptabhle
performince results when the articulation score is greater than or ¢qual to
60% wihile scores less than 607 vield unacceptable performance. To put it
another way, EMC exists provided AS > /0% while EMI prevails when AS < 60%.

Given the EMT performance curve and numerical values for the performance
threshold and the Jdesired signal parameter, it is possible to specify the
ievel of interference above which EMI exists. For example, with respect to

Figure 1, §/1 equals -18 dB at the performance threshold. ‘fTherefore, when




5 = ~10 dBm, interference with average power greater than 8 dBm produces EMIL

On the other hand, with S = =10 dBm, EMC exists when I < 8 dBm. By definftion,

the susceptibility Tevel, L, is the level of the interfering signal that

results, for a specified desired signal, in operation at the performance
threshold. Although the numerical value of 1 depends upon the desired
signal,the susceptibility level is primarily a characteristic of the systom,
subsystem, or equipment involved. Returning to the example of Figure 1,
assume S = -10 dBm. The corresponding susceptibility level is given by
L = 8 dBm. However, an improved design of the speech communication svsten:
of t'igure 1 could result in the susceptibility level beiny increared to a
value greater than 8 dBm when S = -10 dBm.

It is important to recognize that EMI performance curves are a function

-

of the type of interference encountered. For cxample, given an ™ com

cations receiver, separate EMl performance curves apply te the diticorent caroesw

of AM, F¥, and pulsed radar interference. Although a complete sct of EMI
performance curves does not exist, many curves have been generated fov scveral
types of communications receivers under a wide variety of interiering sipnals
Having introduced the concepts of EMI performance curve, perrormince
threshold, and susceptibility level, a%tention isnow focuscd on EMC vodeline
and analysis. Historically, approaches to this problem procceded trem o
deterministic point of view in which the sipnals, coupling paths. and cquip-
nent characteristics are assumed to b2 known. Uncertaintiecs were accounted
for by utilizing "worst-casc" models. However, many m.corn clecty ~iymetic

envirouments and electronic equipme: .5 have Poecome w0 compiex cuey no longer

can be modeled either rcealistically or efficiently using a deterministic




approach. This is particularly true of equipments containing microelectronics.

In particular, digital circuits are currently being designed with the latest
integrated circuit technologies where hundreds and even thousands of active
devices are fabricated on tiny silicon chips. The resulting circuits are

so complicated they cannot be analyzed, or even simulated on a computer, in
order to determine their EMI performance.

In recent years macro models have been introduced for simulating com-
plicated circuits. Ideally, the behavior of the macro model closely approx-
imates that of the original circuit even though the macro model employs
significantly fewer active devices. Limited success has been achieved thus
far. For example, EMI in anoperational amplifier containing 25 transistors
has been successfully predicted by a macro model employing only 2 transistors.
In addition, macro models are currently being developed for predicting EMI
in simple digital logic circuits.

However, the electromagnetic enviromment and equipment susceptibility are,
in reality, random in nature. By utilizing a probabilistic approach, statistical
macro models can be developed which simplify the problem of characterizing
complicated signals and circuits. In such an approach, detailed circuit
models are replaced by statistical models where probability density functions
are used to evaluate probabilities and statistical averages asscciated with
the response. Following the lead of Dr. Capraro of Rome Air Development Center
{2], this report proposes and analyzes a probabilistic EMC model which is
useful when the deterministic approach to EMC modeling and analysis is

inappropriate. Additional material relevant to this work can be found in

the paper by Bossart, Shekleton, and Lessard [3].




2. THE PROBABILISTIC MODEL

For simplicity, consider the EMC problem illustrated in Figure 2

where both a desired signal, s(t), and an interfering signal, i(t), couple

Desired Signal Source dit) Coupling path

Equipment

s(t

i(t)

Interfering Signal

Source Coupling path

jt)

Figure 2 A simple EMC problem.

into an equipment. If the desired signal is to convey information, it must

be unpredictable. In fact, according to information theory, the information

content of a signal increases with its uncertainty. Unpredictability in the

desired signal is also introduced by the coupling path. Typically, the re-

ceived signal, s(t), must be distinguished from the transmitted signal, d(t).
t
For example, unpredictable signal distortion may arise when the attenuation

and phase characteristics of the coupling path are unknown. Also, the trans-

mitted signal may undergo fading, whereby the received signal amplitude is




found to fluctuate in a random fashion. 1In addition, additive noise may be

introduced in the coupling path so that the received signal actually consist:-.

of the sum of signal plus unknown noise. In the probabilistic approach, un-

certainty in the desired signal is incorporated by treating s(t) as a sample

function from a random process.

The interfering signal may enter the equipment dirvectly through the input
port, Tt may also penctrate the equipment indirectly by coupling on to cables
such as power lines or by propagating through apertures in the case. As with
s(t), the interfering sipnal i(t) is likely to be unpredictable. Some of the
uncertainty may be due to the transmitted signal, j(t), also being an infor-
wation bearing signal. Additional uncertaint may be intreoduced by the
coupling path. Finally, the mechanism by which i(t) enters the equipment mav
not be completely known. This is especially true when the interfering signal
couples onto wires or cables and/or through apertures. As a result, i(t) is
also trected in the probabilistic EMC model as a sample function from a
random process.

The final uncertainty arising in the EMC problem is associated with the

equipment itself. Tt is not possible to manufacture "idertical" resistors,

diodes, transistors, etc. having precisely the same parameter values. Porasitic |
elements, whose values cannot be controlled, mav play an important role in ;
an equipment's behavior. The positioning ¢f wires and cables may differ {rom

one "identical" equipment to another. Also, cquipments are apt to age differ-

ently. Therefore, it is highly unlikely that the EMI p..formance curves of

"identical" equipments will be identical. This is illustrated in Figure 3

where the EMI performance curves for many "identical" speech communication
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Figure 3 EMI performance curves for many "identical’ speech
communication systems subjeccred to the same desired
and interfering signals.
systems are shown. As in Figure 1, the selected performance critericn ju the
articulation score which is plotted versus the signal-to-interference tatio,
S/1. 1In generating Figure 3, it 1s assumed that cach equipment is expored
to the same e¢lectromagnetic environment (i.e., each equipment expericnces the
same desired and interfering signals). Observe, in Figure 3, that at the

performance threshold the signal-to-interference ratio varies from =24 db o




-12 dB, depenaiag upon the cquipment under test. Consequently, for a given
desired sigeal, there is a 12 dB variatiovn in the susceptibility level, L.

For examplic, when $ = -10 dBm, L ranges from +14 dBm to +2 dBm. In the

probabilistic approach, the uacertainty in the suseceptibility level is in-
corporated by treating L as a random variable.

In summary, the probabilistic model proposed for the EMC problew of
Yigure 2 is obtained by treating

1)  the desired signal, s(t), as a sample function from a random proces-.

2) the interfering signal, i(t), as a sample function {rom a vandom
PLOTENS,

3)  the cquipront as a sample from an enscnble of randomly dictribure!
“"ideattical" cquipments whose EMI performance curves ray be characterized in
terns of the randewm susceptibility level, L, For g specificd desired sipgnal,

SogurT.

L indicates the minimum leved of the intervering sipnal above which EMI
The remainder of this repore is devoted to use of the probabilistic

wodel in determining EMC and EMI.
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3. THE GIVEN SICNAIL AND INTERFERLNCE EMI AND EMC PROBABILITY JiLCTLONS

For simplicity in developing the proposed probabilistic EMC nodel, dis-
cussion is again centered around the simple EMC problem depicted in Figure 2.
For ecase of discussion, it is assumed that kncwledge of only the desired and
interfering signal average powers are required to determine EMI performance.
0L course, depending uponthe parcvicular problem at hand, knowlcdge of other
signal parameters such as peak amplitude, energy, or peak power may be necoc !,

Assume s(t), the desired signal at the equipment, is known., let unces-
tainty in the equipment's EM1 performancc curve be characterircd by the ran':
susceptibility level, L. (In this report random variables are denoted by
upper case letters while values assumed by the random variables are represers o
by lower case letters.) Let the average powers of the desired und intevferi:,
signals be denoted by the random varjables S and T, respectively. GCiven
§ = s, the random variable L equals the average power of the interfering si oo !
required to cause the equipment to operate at its performance threshold.

The random behavior of I is governed by its condiiional cumulative dis-
tribution function (CDF) which is denoted by FL{S(QIS). By detinition,
FLlS(le) is the probability, given € = s, that the random variable [ is les.

than or equal to the value (. Symbolically, this is written as
ELIS(QIs) = P(L < &|s]. (1)

In general, it is difficult to theorctically determine the conditional CDF
of L. Howevcr, it can be obtaincd empirically throush laboratory measurcments.

For this purpese, it is nccessary to have a large number, N, of "identical"

equipments all exposcd to the same desired and interfering signals. lLet NFWI(;)




m ~

11

denote the number of equipments experiencing EMI when the average power of the

interfering signal equals . The experiment proceeds by 1) holding the
desired signal average power at the constant value $ = s, 2) gradually in-
creasing the average power of the {nterfering signal, and 3) recording the

value of NE“L(l). A typical result of the experiment is shown in Figure 4.

Nemz(£)

Nbee e e e e e e e e

o . e w—

@)

e
o
2z
o

Figure 4 Experimental result in measurement of conditional
CDF of L.

Note that NLMI(O) = 0 bccause £ = 0 implies the absence of an interfering
signal. The value of the interference average power at which the first
equipment frem the group of "identical" equipments rcaches its performance
threshold is pgiven by ¢ = Ql. As the average power of the interfering signal
is incrcased, wmore and more ¢f the equipments experience FMI. Finally, the

Nth and last cquipment. from the group of "identical® equipments reaches its

performance threshold when the interference average power equals QN' Of courue,




an cquipment's susceptibility level must be less than £ when {t suffers EMI
with the interference average power cqual to some value £. It follows
that NEMI(Q)/N is an estimate of P(L <« i(s]. Dividing the ordinate in

Figurce 4 by N and smoothing the resulting curve yields an approximation for

the conditional CDF of L, as shown in Figure 5.

FLIS (2is)

Figure 5 Approximation to conditional CDF of L.

The curve in Figure 5 is conditioned on the presence of a desired signal
s(t) whose average power is given by S = s. In general, as different sample
functions from the ensemble of s(t) excite the equipment, the value of S changes
and a family of curves for the CDF of L is generated. A typical family is
shown in Figure 6 where, as would be ecxpected, the susceptibility level is

seen to increase with increasing values of the desired signal average power.
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Fusis) | 1 _ Fuis 410)

FLIS (8|S|)

FL|5 (3|Sﬁg 2’

Fljs(L{Sﬂ
Fus (Lisg)

Figure 6 Family of coaditional CDF's of L.

The conditional CDF of L, F. . (2!s), can be given a second interpretati-u.

L|s
Assuue thuc average powers of both the desiredand interfering signals are known.
In particular, let § = s and I = 1. FMI results when the susceptibility leve:

is less than the average powee of the interfering signal. Note that
Fl'ls(ils) = P{L < i|s] (2)

is the probability that the susceptibility level is less than or cqual to i,
given § = s. Hence, FLls(i|s) equals the conditional probability of EMI undci the
¢ircumstance that S = s and 1 = i. Therefore, FLIS(ils) is referred to as thc

iven signal and interference EMI probabllity function.
g Sig and il p 14

On the other hand, EMC exists when the susceptibility level is greater

than the average power of the interfering signal. The given signal and dnterteroae

EMC probability function is defined Lo be

Clls(i!s) =P L~ )8l =1~ FLIS(i.‘s). &)
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By definitjon, CIlS(ils) is the probability that the susceptibility level is b

greater than i, given S = s. Conscquently, CIIS(ils) equals the conditional
probability of EMC under the circumstances that S = s and I = i. Since
Clls(ils) is the complement of a CDF, it is a nonincreasing function whose

value ranges from unity to zero with increasing i. A typical plot of the

given signal and interference EMC piobability function is shown in Figure 7.

Cpys (ils)

Figure 7 Typical plot of conditional EMC probability function.
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4. DERIVATION OF EQUIPMENT EMC 1IN A RANDOM ELECTROMACNETIC ENVIRONMENT

The given signal and interference EMI and EMC probability functions are
applicable only if the average powers of the desired and interfering signals
are both kncwn. When the equipment operates in a random electromagnetic en-
vironment, S and/or 1 may not be known. Useful results are then obtained by
performing enscmble averages over the unknown random quantities.

Assume the probability density functions (PDF's) of S and 1 are denoted
by fs(s) and fI(i), respectively. The condit wmal PDF of the susceptibility
level, L, is obtained by differentiating the conditional CDF of L with rcepect
to £. 1In particular,

dF, | (L]s)
£ 1s2le) = s . (4)

In general, the conditional PDF of L varies from one value of s to another.

A typical family of curves for f (2|s) is shown in Figure 8. 1t should be

L|s

< fus (£10)

Figme 8 Yamily of conditional PNF's of 1.

e e i e b e e
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noted that L and S are likely to be statistically dependent random variables
even when S and 1 are statistically independent.
The first case considered is the situation in which $ = s is knuwn but

I is unknown. Averaging C_ .(i|s) over all possible values of I, thcre result.

1|s

Cg(s) = J Clls(ils) £ (1)di. (5)

-0

Since

CIIS(ils) = P[L > i]s] = ji leS(ils)dﬁ, (6)

it follows that Cs(s) can be expressed as

Cg(s) = Jm J fL|S(Q]s) £ (i)de di. (7

- i

Given S = s, Cs(s) is the expected probability of EMC obtained by averapging
over all possible values of the unknown interfering signal average power.
Consequently, Cs(s) is referred to as the given signal EMC probabilit:
function. As implied by the notaticn, Cs(s) is a function of the varticual .
value of the known desired signal aver:zge power.

A second case arises when S i{s unknown but it is know that [ = i.

Averaging Clls(ils) over all possible values af S, we obtain

¢, () = f CIIS(i|s) f (s)ds. (®)

-00




Substitution of (6) into (8) yields

¢ (4 = Jm Jw fLIS(21s) f (s)aL ds

-® 1

(9)

00 00
= J J fL,S(Q,s)dQ ds
00 i

where fL S(R.s) is the joint PDF of the random variables 1. and S. CI(i) is
»

referred to as the given interference EMC probability function, Given I = i,

CI(i) is the expected probability of EMC obtained by averaging over all
possible values of the unknown desired signal average power. Analogous to
Cs(s), CI(i) is a function of the particular value of the known interfering
signal average power.

Finally, consider the case in which both S and 1 are unknown. Averaging

Clls(ils) over all possible values of S and I, there resuits

o0
= . s . Y
c [ I“ 0115(1,5) fg p(s,1)ds di (10)
-0 ~C0
where fs I(S:i) is the joint PDF of the random variables S and I. Typically,
s

S and I are statistically independent. Then

fS,l(s’i) = fs(s) fI(i). an

Use of (6) and (11) in (10) yields
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Jm Jm C; (1)s) fg(s) £ (1)ds di

-C0

5

J Lls(9|s) fo(s) £.(5)de ds di (12)
i

b
T3

5

3

00
Im J fL’S(i,s) fI(i) df ds di.
- 1

C is referred to as the EMC probability. It is the expected probability of
EMC obtained by averaging over all possible values of the unknown desired
and interfering signal average powers. In analogy to the concept of re-

liability, C is also referred to as the system compatibility.

By definition, the probability of EMI is the complement of the probability

of EMC. 1It follows that

L}

1l -~ Cs(s) the given signal EMI probability function,

1 - CI(i) the given interference EMI probability function,

and

1 -¢C = the expected EMI probability.

To elaborate, given S = s, [1 - Cs(s)] is the expected probability of EMI
obtained by averaging over all possible valucsof the unknown interfering signal
average power. Similarly, given 1 = i, [1 - CI(i)] is the expected probability
of EMI obtained by averaging over all possible values of the unkuown desired

signal average power. Finally, (1 ~ C) is the expected probability ot EMI




obtained by averaging over all possible values of the unknown desired and

interfering signal average powers.
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5. THE EMI RATL FUNCTION

The EMI rate function, for a specified desired signal, is denoted tov
ks(i). By definition, given § = s, As(i)di equials the probability an cquip-
ment will experience interference for i < T < 41 + di provided compatibiiity

exists with 1 < i. To be move specific, let A, and A, denote the conditionl

1
events

Al: equipment experiences EMI with i < 1 < 1 + di, given & =
A2: equipment does not experinece EMI with I < i, yiven 5 = &,

In terms of the events Al and A2,

P(AlAZ)
A (1)di = P(Al[Az) = P(AZT— . ¢
Since, given § = s, the joint event A1A7 is equivalent to tre coqnioment!

susceptibility level being in the interval (i, i + di), it fo!lows tha

P(AJA) = P[i~1 < i+ di's = 5] = ¢ (1 i, (ra

In addition, given § = s, the ovent A2 is equivalent to the oo iprent

susceptibility level being greater thun i. Theretore,

= [ = - ) i -~ :
P(A)) = Cpglils) = 1 - () .

Subsitution of (i4) and (15) into (13) vicids




Dividing through by di, we obrain

(ils)
(1!5) ___Jj__

fll
A (1) = = . (173
s 1 Lls(l]b) 1 I,S(i[s)
Making the change of variables 1 = ¢ in (17) and rearranging terms, the
differential equation for FL‘S(QIS) becomes
dF_, . (1ls)
LS T L, RORANADERROP (18)

Because no interference results when the interfering signal average power is

zero, the associated initial condition is

Fslols) = 0. (1o
The resulting solution of the differential equation for FL‘S(Q 3) is given v
.
L
- d

Jo As(u) u
[ = - . sy
FLIS( [s) =1 -e (20)

The complement of PLiS(QlS) is Clls(ils). Hence,

i
-J Xs(u)du

i = - i = ¢ 2
CIIS(l[s) 1 FL[S(lls) e . «n
Observe that knowledge of the EML rate function A (i) is sufficient to
completely determine the given signal and interference EMI and EMC probability

functions.

The conditional PDF of L, fL,g(le), is also completely determined by




the EMI rate functicar. Differentfation of (20) with respect to § ylelds
L

dF] S(Rls)

A, (u)du
. [o]
(2fs) = T

fLIs = A (2) e . (22)

This result can also be derived by direct substitution of (21) into (17).

Similarly, substitution of (21) into (5), (8) and (10) results in the ex-

pressions
i
—J Xs(u)du
Cy(s) = fw e ° £ (1)d1, (23)
i
-f Xs(u)du
c, (i) = Jm e ° £ (s)ds, (24)
and

J
C = j e ° fg 1(s»1)ds di. (25)

Assuming statistical independence between S and I, it is readily «cen from

(21)~(25) that knowledge of kp(i), fs(s), and fl(i) is sufficient to determine

fLIS(Q[s), CI!S(i[s), Cs(s), CI(l), and C. Note that XS(L) characterizes
the equipment while fs(s) and fl(i) characterize the desired and interfering '
signals, respectively.

The concepts introduced above are now illustrated by two examples.

Example 1: Assume S and I are statistically indepandent uniformly distributed

)
i
L
i




r—repe

random variables with PDF's

1 » 0 <s <s
s - "~ "0

fg(s) = ° (26)
0 » otherwise

and
-.l— » 0 <1i<d
1 - i ¢ |
f() =y ° (27)
0 » otherwise.

Also, assume the EMI rate function is given by
A () = A -2, (28)
s (o] s ”
o
Obvserve that the EMI rate function is a constaant with respect to i but de-

creasces linearly with respect to s. It follows that

2
s
J )\s(u)du = ,).02(1 - ;—) (29)
o o

Substitution of (29) into (20) and (22) yields

s
—Aol(l - g—)

1 -e ° (30)

u

FL,S(zis)

and

L - 2
(o] S
[o]

S
fL'S(2[s> (1 - e (31)

[¢]

The susceptibility level, L, of the equipment is seen to obecy an exponential

distribution. Observe that 2 varies from 0 to « even thouph the rangce over
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which £ (1) is nonsero oxtoends trom 0 to {U. With roforoenee o (00 ood iy

1

the given sipnal and jetorrerence IMC probability tanction in expross od

<
-3 i - —
01\1 SO)
o (i = ¢ . (R
Cl|5(1‘b) ¢

A sketch of CI‘S(iiS) is shown in Fipure 9a. In the abaoree ot dnterfore. o,
i

Cpg fils) Cs (s) ¢ (i)

| | I
. Aglg t1-3) 1o g0

T A
I e !
i -
5 | Moio ! Aoto ' N
o . ° So s o lo !

(o) (b) {c)

Flgure 9 Sketches of a) €, (i's), b) Cglsdy and o) ¢ vin.
|

the probability of EMC should equal unity. Note that (I g““) St g

pated. Also, reflectiny the fact that the EMI rate functiom congte oo

(i|so) cqualy unity, irdependent of i, Uiven s 4 oo, e e
o

s = 8 .
o’ 1s
of EMC decreases for increasing values of the interfercence AVOTare power .

gliven signal EMC probability function is obtained by use of (27) and (v

(23). Specifically,
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S
e
CS\S) = J e i di
[o] (o]
(33)
S
-)\oio(l - -s—)
1 o
= -———-————-——S [1 - C ] .
Yolot =50
o]

Cs(s) is sketched in Figure 9b. Because the EMI rate function decreases lincarly
with respect to s, Cg(s) is seen to be an increasing function of s. When

s = so, Cs(so) = 1, as was the case with C (i!s). The given interference

1|s
EMC probability funcrion is obtafned by use of (26) and (29) in (24). In

particular,

s
. -A i - ) .
C.(1) = J e ° 2 4s
1 [
o [o]
- i
1 o]
= i [1-e¢ ]. (3%)

A sketch of Cr(i) appears in Yigure 9c. As would be expected, CI(i) is a

Gecreasing function of i with CI(O) = 1. By coincidence,
-2 i
[ o]
- 1-e e
CS(O) CI(io) = Aoio . (35)

Consequently, the EMC prebability averaged over all possiblevalues of 1, piven




e e an g =
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S = 0, is 1identical to the FMC probability averaged over all possible values

of S, given I = 10. Observe that S = 0 and I = io represent worst case situations
with respect to the desired and interfering signal average powers, respcctively.
Finally, the EMC probability is obtained by use of (26), (27), (11), und (29)

in (25). This yiclds

. s
1. rs —)‘ol(l Ts ) 11
C = f f ° e ° A = ds di
8 i
o’0 (] [
1 (Yo 1- e-x°i S
o o o [ o

S
-Xoio(l - ;‘)
1 (5% 1-e M 1 (%
-.s—-f dS =-:-—f CS(S)dS.
oo A i -2 5 1o
oo &,

Unfortunately, a closed form expression is not possible for C. However, a value
for C can be obtained using numerical integration. In fact, C is nothing mere
than 1/1o times the area under CI(i) or, equivalently, l/so times the area

under Cs(s).

Example 2: As in example 1, assume S and I are statistically independent uni-
formly distributed random variables with PDF's specified by (26) and (27). Yow,
however, let the IMI rate function incrcase linearly with respect to 1 and,

as in example 1, decrecase linearly with respect to s. Specifically, let

s ,
As(i) = Aoi(l - ;—). (37)
o
Observe that
by = 2 (1 - Eyp? (38)
g U/ 2 ’ s *
o o




27

Canscquently, the CPF and PDF of L are given by

Ao S\ ,2
—T(l —;;)9.
FL[S(QIS) =1 -~-e (39)
and
A
o S \,2
A Ak
fLIS(Rls) = A, - ;;)e . (40)

These are recognized as the CDF and PDF, respectively, of the Rayleigh distri-

bution. Following the procedure of example 1, it can be shown that

A
[ S4.2
"7 G

Clls(i[s) = e > (41)

Cy(s) = /3 ferf G A -2 - 31 42)
o]

1A -2
(o) o] So
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Once again, a closcd form expression fur ¢ does not exist.  As in cxample 1,
the probability of EMC cquals unity in the absence of interfercoce and/or whon

S = S, corresponding to a zero EMI rate function. 1t follows that

3 = ilg = s = ( Y o= \
CIlS(OIb) CL}S(I‘bo) LS( O) (1(0/ 1, (
as can be verified by examining (41) - (44).

Typically, the conditional CDF of the susceptibility level, F SOy,
can be determined only by experiment. fL,S(Z!s), the conditional pPDY o1 1,

is then found by numerical differentiation. Uowever, to facilitate analwsic,

is convenient to approximate the resulting FDF by a well known distritutiorn,

w

]

The given signal and interference EMC probability function and the FMI razt

function are tabulated in Appendix A for some commcnly used 'DP's.

S e e e e < - e— - . - - —— . el

e

many cases, analytical expressions can then be derived for CI,S(i‘s) and (i,

T
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6. THE COMPATIBLILITY MARGIN

As mentioned ecarlier, compatibility exists provided the average power of
the interfering signal is less than the susceptibility level of the equipment
involved. In some cases, the probability of EMC is more readily evaluated by

introducing the random variable

Y=L-1I. (46)

In terms of ¥, compatibility exists provided Y > 0. Y also gives the amount
of average power by which the interfering signal can be increased before EMI

occurs. For this reason, Y is referred to as .he compatibility margin. 1In

this section, cxpressions are derived for Cs(s), Cl(i)’ and C in terms of the
compatibility margin.

The given signal and interference EMC probability function is defined in
(3) to be

cI|S(1(s) =P[L > ils] =1 - F | (i]s)

L|s

= Ij fLIS(z!s)dz.

CIIS(ils) has the following interpretation. Let an equipment be selected at

random from an ensemble of "identical" equipments. Apply to the equipment a
known desired sipnal with average power S = s and a known interfering signal

with average power I = i. (ils) equals the probability of EMC. Alter-

1ls

natively, assume the desired and interfering signals with average powers S = s

and I = 1, respectivelyv, are applied tothe entire ensemble of "identical"
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cquipments, CIlS(ils) then equals the fraction of equipments that are likely

to experience compatibility.

The given signal EMC probability function is defined in (5) to be

C(s) = jm Clls(ils) COLEN

{oo
- Jm [ J thS(ils)dQ] £, (1)d1 (48)
-0 1

- Jm J fLIS(Q}s) f (1)de di.
-0 i

The corresponding region of intcgration is the shaded region, Rl’ shown in

Figure 10a. In Rl note that £ > 1 ., Now introduce into (48) the change of

i £=i i 1
L= 7
0 R, :t o %,/
= Z/4

(a) (b)

Figure 10 Repdions of integration for Cs(s).




The new region of integration, RZ’ in the i-y plane is shown in Figure 10b.

The boundary £ = { in Figure 10a corresponds to the boundary y = 0 in
Figure 10b. Also, the points in Rl for which 2 > i correspond to those in

R2 for which y > 0. 1t follows that

Cg(s) = Jm [ Jm fLIS(y + i}s) £, (1)didy. (50)
0 -co

Assuming statistical independence between the desired and interfering signals,

1t is possible to write
fIlS(i]s) = £.(0). (51)

The expression for Cs(s) may then be written as

Cg(s) = J [J leS(y + ils) fIlS(ils)di]dy. (52)
0 -o

Now consider the random variable Y =1, - I. Jf L and I are statistically in-
dependent, it can be shown that the conditional density function of Y is given
by (4]

les(yls) = J les(y + i|s) f1|s(i|s)di. (53)

=00

Finally, substitution of (53) into (52) results in

CS(S) = J: fY[S(yls)dy' (54)

As anticipated, the probability of EMC given S = s, equals the probability that

the compatibiiity marpin, Y, 1s greater than or equal to zero. Cs(s) has the




following interpretation. let an equipment be selected at roandom trom an

enscmble of "identical' cquipments. Apply to the equipment a known desired il
with averaye power S = s and an interfering signal with unknown average power.,
Cs(s) equals the probability of EMC., Alternatively, assume the desired siynal
with average power S = s and the interfering signal with unknown averdye power
are applied to the entire ensemble of "identical" cquipments. Cs(u) then ool

on the average, the fraction of equipnents likely to expericnce compatiljlity
when the experiment is repeated many times with the interfering sivoal cliosen
randomly on each repitition of the experiment.

Example 3: Let the conditional PDF of L be Caussian with mean s and variance
2

OL' In particular, assume
S
. 2
£oo(2ls) = —— e 2oy . ¢
L‘S v?(’
L
Also, let 2
i
2
1
) = —— o % . (-
V2 01

Hence, the interference average power is also assumed to be Gaussian with e
2 . .
my and variance OI . Since average povers arc nonnegative, = and mo arc

assumed to be sufficiently large such that (55) and (56) arc nealivibly amel]

for negative values of 2 and 1, respectively. Direct usc of (48) yields

Cy(s) = Im Ji leS(tls) f(1)ag di )
?
£ 2 (i - m)
o -l (¢ - ;) + 2£~~J (o
1 J J 20y © 20
Sl v e L I de ai.
2n 0, 9y

~o i
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The above expression for Cs(s) is not readily cvaluated. However, assuming

1 to be statistically independent of both S and 1., the given signal LMC
probability function can be deterwined from (54) where Y = L = T is the comp it i-
bility margin. Since L and T are statistically independent Caussian randon

variables, it follows that Y i< a Gaussian random variable with mean

and variaoace

9} =0 + 0, . (6o

Therefere, the conditional PDYF of Y is given by

(v - mY)2

2
fo a(yls) = —— ¢ 20 y . (1
Y|S Vo
V2T o,
Y
Substitution of (61) into (54) results in
2
(y =~ my)
- —
1
C.(s) = f (y's)dy = ——= r» e 20 Y dy. (nr)
S MERE ST j
0 To -0
Intreducing the chang: of variables
y - m
7 = ——— (han
Oy
(62) becomes 7 2
- 2 m -z
0o 2 ( EX 2 m,
CS(s) = [ e dz = ) Y e dz = crf(a;) (v
m ~o»
- X
Ty
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where erf(x) is defined in (43).

The given interference EMC probubility function is defined in (8) to be

c (0 = J CI!S(ils) f5(s)ds
= ] [J fL'S(Qis)dL]fS(s)ds (65)
-0 i

Q0 00
= J j fL,S(Q,s)dL ds.
i

§

The corresponding region of integration is the shaded region, R3, shown in

Figure 11. Interchanging the order of integration,

Fd

N
\

<

N
<o

\

3/

%

‘\:::\\‘\

Figure 11 Reyion of integration for Cl(i).

Cl(i) becomes

c (1) = I [ Jw [ g(trs)s)at. (66)
i - 0




However, the marging! PDF of L is related to the joint PDF of 1 and § according

to the rolation

- . (
£, r £ g(Ls)ds. (67)

—

Substitut ion of (67) into (66) yields
o
C (i) = J £, (Wde (.%)
I Rt

where { is the known average power of the interfering sipgnal. Now consider
the randoum variable

Y=L-~-1 (69)

where 1 is recognized to be a knovmn constant. The conditional PDF of Y is re-

Jated to the marginal PDY¥ of L as follows:

leI(y[i)dy fL(v,)dQ. (70)

Hence, the given interference EMC probability function can be expressed as

20
I(1) , Yh(y\l) y (7hH
0
Analogous to (54), the probability of EMC, given T = i, equals the probabilit

that the corpatibility marvgin, Y, is greater than or cqual to zero. Cl(i) has
the following interpretation. Let an equipment be selected at random from an
c "

enseable of Videntical" equipments. Apply to the equipment a known interfering

sipnal with average power T = [ and a desired signal with uoknown average power.

. - ———— -

b ———— -
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Cl(i) equals the probability of EMC. Alternatively, assume the interreringe

signal with average power 1 = 1 and the desired signal with unknown averan
are applicd to the entire enscwble of "identical" equipmernts. C](i) then eana)
on the averape, the fraction of equipments likely to expericnce congoi iy

when the experiment is repeated many times with the desired sigaal
randomly on cach repitition of the experiment.
Finally, assume | to be statistically independent of both § and L. Ile

EMC probability is defined in (12) to be

C = J J Clls(i‘s) fs(s) fl(i)ds di

-0 -0

= J I (Jh fL]S(L[s)di]fs(s) £(i)ds i (.

o - i

- . - .
= J jm j fL,S(Q’s) fI(l)dJ ds di.
-0 Pt .3 j_

Integrating {irst with rcspect to s, C is given by

C = J J [J fL’S(E,s)ds]fI(i) d’ di. (74

-00 i =0

Substitution of (67) into (73) vields

C = J J fl,(ﬁ) fl(i)d?, di. o0
- i

Observe the simlarity between (74) and the last equation in (48). The onlv

difference 1is that the conditional PPF of L appears in (48) whereas the marpin

[t
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750

PO of L appears in (74), Applying the same procedure used to convert (48)

into (54), 1t follows that

C = f fY(y)dy (
0

wvhere Y = L - I, Onee again, the probability of EMC equals the probability
that the compatibility margin, Y, Is greater than or equal to zero. Note that
Cq(s) in (354), CT(i) in (71), and C in (75) use the PDF's f

T
Y!S()’ls)! [Y:I(.\ ‘)1

and

fY(y), respectively. C has the followinz interpretation. Let an equigmen:
be selected at random from an ensemble of "identical" equipments. Apply to

the cjquipment desirei and interfering signals whose average powers are urnknown,
C equals the prctability of EMC. Alternatively, assume the desired and in‘er-
fering signals wvhose averapge powers are unknown are applicd to the entire
enzerble of "identical" equipments. C then equals, on the average, the f{rsction
of cquipments likely to experience compatibility when the experiment is repoeated
many times with the desired #rd interfering signals chosen randemly on cach
repitition of the experiment.

Example 4: As in example 3, all random variables are assumed to be Gaussian.

In particular, =he PDF's of f (ils), fs(s), and fI(i) are approximated b

Lls
_ o - s)2
2
£ (2fs) = —1e o L (7€
L(s o
Y2n o
»(s_— ms)2
2
Fols) = —=t— e 298, i)
S Vo

Y& o,
s}
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and 1

f (1) = S ¢ I . (78)

Given (76), (77), and (78), it is desired to evaluate Cl(i) and C using (71)
and (75), respectively,
The first step is to determine the marginal PDF of L. With relcrence
to (67),
%
fL(l) = J fL’S(Q,s)ds. (79

However,

{ S(9,5) = f

L, (ils) f4(s)

Lis

2
1, (-2 (8- m)
- 3 + -]
7 2 2
S S L ‘s . (£9)
27 oL os

By completing the square in the exponent with respect to s, it can be shown

that

g + O L0 2 + m 2
P P T P - T A
2 z 2 '8 2

2
1 6] O., OS + \'J.L

. e . (81)

e ———
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Substitution of (81) into (79) results in
2 ~
p -mg) o + 0 20"+ m_ 2
- = ~5 1 S L S S 71
2 2 2 | =1l s - —- -
o} + o 2 2 2 2
o 5 Loy L Y% c” + o
fL(:) = o e J (& ds
21 01 US o
2
p (Lo ms)
’ 052 * O12 o, @
e ' V2 LS
- 27 o, ¢ 2 2 (82)
LS 6.5+ 0o
L
2
R
2 2 2
1 O * oy
= e .
2 2
V2T Og + o
Therefore, L. is a Gaussian random variable with mean mg and variance (osz + CTL).
Since average powers are nonnegative, Mg and m, are assumed to be sufficiently
large such that fs(s), fl(i), fL S(l,s), and fL(Q) are negligibly small for
b4
negative valuey of their arguments.
To evaluate Cl(i) by means of (71), it is necessary to determine fYII(vfi)

where Y = 1, - 1 and i is a known constant. Since L is Gaussian, the conditional

. . . . 2 2
PDF of Y is also Gaussian with mean (ms - i) and variance (oq + 0) ).




Specifically,

| by - (mg - )

S L
e

1
i) = . g
leI()’]) //_2-—_—_j? (83)
Var as + C

L

Applying thie sawe procedure used to evaluate (62), it follows that

m, - 1
S .
C (i) = t £ (y]li)dy = erf( — ) (84)
I 0 v losi + oLz

where erf(x) is defined 1in (43).

Finally, to evalvate C by means of (75), it is necessary to determine

fY(y) where Y = L ~ I. Let I be statistically independent of L. Since L

and I are both Gaussian, the marginal PDF of Y is also Gaussian with mean

. 2 2 2
S mI) and variance (OS +0  +0

L 1 Y. In particular,

(m

1 OS + 012 + O 2
£, () = ' . (89)
VI ot ol wo?

9D

Applying the same procedure used to evaluate (62) and (84), 4t follows that

%
|

00 m-ml
C = J fY(y)dy = ert( /,—7;-' 5 " )

(86)
0 og +a + 0
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It is of intcrest to comparce the expressicn for CS(s) in example 3 with these

obtained for CI(i) and C in cxample 4. In each case, the expressions

involve identical functions of the means and variances of IY}g(y}s), iv{l(y!i),
B Y

and fY(y), respectively.

It is not always possible to obtain analytical expressions for Cg(s),

Cl(i)' and C, even when well known PDE's are specified for fL’S(L]s)' f.(s),

S
and {I(i)° Numerical integration techniques must then be usced to cvaluate the
integrals in (5), (8), and (12) or, equivalently, in (54), (71), and (75).

To illustrate some cases where analytical expressions are possible,

i

Cy(s) J clls(i}s) f(Ddi

(87)

n

j les(yiS)dy
0

{s evaluated in Appendix B for some well known PDF's of fL‘S(ﬁ!s) and fl(i).
Consistent with the property that the susceptibility level of an equipment is
likely to incrcase as the desired signal average power 1is increased, the
conditional PDF's of L are specified 1in Appeadix B such that larger siscepti-
bility levels are more probable with larger values of s. This resules in
CS(S) being a nondecreasing function of s.

Knowledge of fyls(yls), (Y‘I<y|i)’ and fy(y) can provide additicnal in-
sight into CS(S), Cl<i)' and C, respectively. When certain symmetrics in the

undertyfng PDP's exist, peneral conclusions can be derived concerning the
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probability of I'MC. For example, assume f (2]s) and fI(i) are both sym- i

LS

metrical functions about the same mean m. Therefore, for all x,

fLIS(m + x|s) = (m - x|s) (88)

les

and

i

fI(m + x) fI(m -x) . (89)

From (53) tie conditional PDF of Y

L - I is given by

fYIS(YIS) = J fL[S(y + ils) {Iis(ils)di

=00

(CR);

= j fos(y + i]s) £, (1)ai

—co |

where fIIS(i]s) has been replaced with fl(i) by assuming statistical indepc¢ndence

between S and I. Observe that

leS(—yls) = f leS(-y + i]s) £ (1)di. (91)

-0

Introduction into (91) of the change of variable
i=m+x (92)
and utilization of the symmectry properties stated in (88) and (89) results in
0
ins(—yls) = J IL[S(m +x - yls) fl(m + x)dx )

-0

(93)

00
= J les(m - x + yls) fl(m - x)dx.

-0




Finally, with the change of vardable

v oS om - X, (94)
(93) becomes
oy - , (. w
fv]s( yis) | fs0 % wls) 00
(95)
= |
Fypstvis)-

Hence, leg(y!s) is an e¢ven tunction of y. Tt follows that

o

1
cs(s) = JO f\'ls(y!S) dy = 'E (9

independent of the particular PDF's for f (2]s) and fI(i) as long as the

L|s
conlitions in (88) and (89) are satisfied. Similarly, it can be shown that
CI(i) = 1/2 provided fL(ﬁ) is a symmetric function about the mean i, Also,

C = 1/2 when fL(R) and fI(i) are both symmetrical functions about the seme

mean m.
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7. MULTIPLL PERFORMANUL G HRT oS

thus far, discussion has been restricted to the special case where the BMI
performance curve is subdivided into two perforumance categorics by a sinele
performance threshold, as shown in Figure 1. To certain applications it ma
be desirable to subdivide the EMI performance curve into three or more per-
formance categories. For cxawple, it may Ye usctul to categorize perforrance
as either 1) acceptable, 2) warginal, or 3) unacceptable, as illustrated in

Figure 12. The LMC performaace threshold is that value of the pertormance

100~

— »
ACCEPTARLE (EMC) /’_—-
80 5

t EMC PERFORMALNCE ,_,’f
60~ MARGINAL THRESHOLD

3
40 .
20}~ UNACCEPTABLE (EMI)

t

EMI PERFORMANCE -
THRESHOLD

(in a2y

]

|

|

I

l |

! I

] 1

S S S
Ly Le 1

Figure 12 EMI performance curve of a speech communication gyotem sulddivided
into three performance catcgories.




criterion which demareat

Siailarly, the EMI parformance threshold is that value of the performance

criterion which demarcart

AL dn the sincle threshold case, EMC and EMI are said to eaist when the per-

Lurmance is acceptable and upacceptable, respectively,

stoeeptibilicy level, 1

for a specivied desired siynal, in operation at the EMC performance threshold.

1

the interfering sipnal that recults, for a specified desired signal, in operaticn

at the UM! performance t

1n the protabiiis:

treated as iandom variables whose behaviors arc governed by the conditional CDF's

and

and

hreshold.

In addition, the EMT susceptibility level, LI’ is defined to be the level of

45
vs the repions of acceptable and marginal performance.
¢s the regions of warginal and unacceptable performance.
By definition, the EMC
c is the Jevel of the interfering signal that resulits,
¢ approach, the susceptibility levels, LC and Ll' are
P(L, < M (97)
< f.is]. Qs
P[L1 __QIIS] (98)
dFLcls (219
- (99)
dQC
~——d£1 - (10u)
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In the cnsuing discussion, it is assumcd that performance is degraded as the
average power in the interfering signal is increased. It follows that LC and
LI obey the inequality

L, <L.. (101)

EMC exists when the susceptibility level, LC, is greater than the average

power of the interfering signal. Given § s and I = i, the conditional

probability of EMC is given by

CIls(ils) = P[LC > i, Ly > i|s]
(102)
= PL; > i[(LC > 1),s] P[L, > i]s].
Because of the inequality in (101),
P[L, > il(LC > 1), s] = 1. (103)
Therefore, (102) cimplifies to
CI|S(i[s) = PlL, > ijs] =1 - FLcls(i!s)
(104)

= J' £ ‘S(chs)dﬁc.
i C

CIlS(i|s) is known as the given signal and interfercnce EMC probability function.

EMT exists when the susceptibility level, L is less than the average

]v’

power of the interfering signal. Given S = s and I = i, the conditional

probability of EMI is given by

]

(i|s) Pl

I A
-
=
FaN

< i|s]

U1|s I

"

A

[ N

~~

=
—

A

(105)
PlL, < S ),s] oPlLp < d]s].




Because of the inequality in (101),

PlL, < i[(Ly < ©),s) = 1. (106)

Thercfore, (105) simplifies to

(1]s) = P[L_ < i]s] = (e s

u. F, .
ils I L, (s

i (1073
::J fLI|S('. Lfs)d‘t[-

-0

(i!s) is known as the given signal and interfcrence EMI probabilicy funciicn.

Ulls

Marginal performance exists when the average power of the interferiung signal

is greater than or equal to the EMC susceptibility level, L but is less than

C,
the EMI susceptibility level, LI. Given S = s and I = i, the conditional

probability of marginal performance is given by

(ils) = PIL, < 4, L, > ifs]. (10%)

M1|s 1

However, performance is either acceptable, unacceptable, or marginal. Since

these are disjoint events,

cIls(ils) + Ulls(ils) + Mlls(ils) =1, (109)

Solving for MI‘S(i!s) and utilizing (104) and (107), it follows that

Mlls(ifs) 1- cl‘s(j[s) ~ U, .(ifs)

Iis

1-@Q-F (ils)) - r }S(i!s)

Lols I

(L10)

i

FLCIS(iis) - T ts(i[s)

L1

i
= j [fLC[S(V:s) - f] {q(f!s)]di.

o
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[ '

f,i!:-) is boown o the siven oivnal o and odnterberoon e ~‘.71"f7-3r"

yl!;
proL hitity function,

The given signal and dntertverence EMU, TMT, and moarypinal porsorman
probability functions are applicable only if the averape powere o the doeoin
and interfering cignals are both knowe. Whea § = s is known but 1 ois unrn oo

the appropriate probabilitics are obtained by averaging cver the unknown

average power of the interfering siynal. Let f (i) deasore the POV oo 1.0 Ten

i

f clls(igs) fo()di

-0

CS(S)

0 e o}
= { Dl yd di
( J L ls('c-b/ fLd 4 AR
: c
-0 i

= given signal EMC preobability function,

Ug(s) = JwUIls(i!s) £ (1)di

-

o | : : : o
f | fLL‘S(iIIS) fI(l)d 1 di N

—0 =00

= given sigral EMI probabilicy funciivoa.

and

M, (5) f MI!S(ils) £ (i)dl

-0
[
= N R ED N SR I R F GO VT c
L ls Lyls I
~-—00 =00

= glveneignal marpinal performomce probabi i




When 1=

obtained by aver.oing

Let 15(5) denote the

and
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i ds known but § i unkacwn, the appropriate probabilites ar

over the unknown averape power of the desired sipnal

PDY ot S, Thoen
r C)
(l(i) (I‘H(i 2) f (s)ds
’rA'I(.
= 3 ‘ T £ (s). ds
Ly xLC‘S( ol s) b( )d C
. (i
T L ey
) 1L(~,S(XC‘\ ¢
e g
= wiven dnterference FNC probahility fwictio,
ru‘ )
U. (i) = &+ U, (i;s) f_(«)ds
1( J | lfs( | ) S )
= fo (i ] (Co0s) 1 (s)de, s
JoI st ety
S e
{

= b f (L.,8)dl_ ds
[ S PR R S
—0) O
= given interference FMI prohodiiioe o g
B LS

rl‘U
M i = ‘ S "~ " (9)ds
I(J> j JL[S(I.h) )S\b)(~

= piven interference marginal Pprfurmnnvo prubnhilix
function.




Finally, when bothr 8 oand |

obtaindd

independ:

and

=

are o unknown,

by Guerapning ever both unhnown averayoe powers.
e between § oand 1, there results
’,13 o
T i s f9) (. (i)ds di
J | (115(" ) fs S) l(J)JQ di
o (a, f‘\
! . s ) o (i)dh,. ds di
f o fLCWS( st) fs(a) 1(1)d c di
—or v ]
j;(x & ; f d. . ds d
{ S i . i
;) L sUe®) Fp() dhpds di
- o} c

ENC probability,

N

] ils ;
LIIS(l'b) fs(b) fl(l)ds di

=t o . .
J ) j lejs(‘il“) fs(s) fI(l)dcl ds di
=t

J J j ELI,S(LI,S) fl(l) daI ds di

EMI probab‘lltv,

M. i's) 5 i ; di
1Iis<1‘5' fs( ) fl<1)ds d

et .
(£, o (ls) = f ()M () f_(i)di ds di
| ! : J
)_O)J_.-J_oo l,C]S Lllb S 1
(1 r ¢ (; ,s8) £ (i)d.,. ds di r (m (if (
: { r s 5 iYa. , ds - (5
J') J'r )IJQ LC’S y . ¢ V) joo Jw ]‘],S

vary fanl rerforsance probab ility,

the appropriate probabilitics

-[)-'")

are

Assuming statistical

(117)

(118)

(1)

(L(i)d;l de dj




Comparison of (111)-(119) with the corresponding cxpressions previously
developed for the single performance threshold case reveals the two scts of
expressions to be quite similar, 1t can be shown that this similarity extends
to the general case for which (n - 1) performunce thresholds are used to sub-~

divide system performance into n categories.




8. SAMPLE STZE CONSIDERATIONS IN THE EXPURIMENTAL DEVIRMINATION OF F /o (7'

Consider, once again, an EMI performance curve with a single pertformance
threshold such as appedars in Figure 3. 1In the probabilistic approach, the i
performance curve for an equipment is characterized in terms of the random
susceptibjlity level, L. The random behavier of L is governed by its conditio,

ChFr, F (i‘s), wiich 1s defined in (1). An experimental procedure for detor-

L|s

mining F (Q[s) through laboratory measurements was described in Section 3.

L|S
It was pointed out, for this purpose, that it is necessary to have a larg.

N, of "identical” cquipments all exposcd to the same desired and intorier ic
signals. In thiy scoction, a method preposed by Kelmogorev and Smirvaow -7

is prescnted for determining a suitably large value of XN.

Denote the empirically obtained conditional CDF of L by EL:Q(A13>. Accoero s
i S

to Kolmogorov and Smirnov, as long as FL‘S(iFs) is a coantinuous CDV, then
|

N N r N £ TSRS I
P[EL|S(SLIS) -8« FLIS(QIS) < ELIS(A,M + 8] -y 20
provided
2 2
N2> ) (WA

where § < 0.2 and a is detcrmiued from Table 1 [8].

TABLE 1

PARAMLTIRS USED IN KOLMOGOROV-SMIRNOV TEST

Y 0.80 0.85 0.90 0.95 0.99

a 1.07 1.4 1.22 1.36 1.63
——~ -— - - - - \_ > 1. - -
EE ———— el
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Lovscion (120 means that, with probability vy, the incquality :l

11s
I \ , i . ) ~ ) R , )
i.] co el Sods osntiotied for o all in the intceurval (~~, 4=). In other words,
1 '
vhotever the bl [ o0 Jo)y oo lors as it i cont hunous, the random donain be -
LS
tween the boundard iN (1) Eoand [’N (2te) 4+ & contains F ("ia) complete]
9 [ nGa (ST i Ay = o odna o . b ) Le s d I QRPN Y oMb lete iy
Lys Lisgt! Llst i : ’

witi probabitity 5. Note that the domain quoted depends on the empirical

distcibut ion }-.1 iq(llﬁ) ehtained using tace particular sample of N equipnents.

Should the expevinent be repeated using a different sample of N cquipments,

N
E

E| .IS(L‘l:s) i+ Likcelv to change causing the domain of width 28 to be centered

alout a different tunctica.

. . . . N N T
In the statistic.d literatare, the interval [IzI g(l]s) -5, I‘Lxc( L8+
P .. [
o called the confidence interval for estimating FLiS(iis). The boundaries
]
T\ N . ‘N 1 Iy . . . ~ -
};I m(&_ 5) - & and I:I |S(‘ |3) + & are called confidence limits for I-l ,5( (s).

[ v I
The prebability v is on'ted the confidence coerficient. Multiplying 1 bv
TGut, 00y s ds called the contfidence level. Thus, (3120) specities a contidcas
domain rer oan ounknown cunmlative distribution functioa.
Eowmple b Let & = 0015 and vy = 0.90. What should be the sanple size, N, o1

the exporinent?

I'rom Table 1, a = 1.22, Substituting into (121), theie result:,

1.22.2

N > 015 = 66.15, (G

Honce, O cquipments are uneeded if, with probability 0,90, }'] .
oo
corpletely contained within the coofidence interval of width 0.3 centoeved on il

cup it feal Opv,

Pronple 60 det 0 = 001 and y = 0,975, What should be the sample size, N, ot 7w

ernper fment?
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Note that vy = 0,975 does not appear in Table Yoo vonccquent by it is

necessary to interpolate between the tabulated values, Using Tincar jctorpolation,

0.975 - 0.95 _ 0.99 - 0.95 (123)
a - 1.36 - 1.63 - 1.36 ° -

Sulution of (123) for a yiclds

(0.025)(0.27)

= = 4. 2.’
a=1,36+ 0.05) 1.53 (124)
Using (121), the inequality on N becomes
N > (———-10'5,3)2 = 234, (125)

Therefore, 234 equipments are nceded if, with probability 6.975, Fqu(I{s) is
to be completely contained within the confidence interval of width 0.2 centered

on the empirical CDF.

{




9. APPRUXIMATION OF F (Q’S) BY A WEILL KNOWN DISTRIBUTION
e e+ et e e e L s ——— — e e = —— -

When F. _(%]s) is determined in the laboratory, it is convenient, for

L|s
analytical reasons, to approximate the experimentully obtaincd CDF by a well
known distribution. In general, several different distributions may provide
acceptable approximations to the experimental data. This scction presents sone
statistical technijues for rejecting candidate distributions which are not
supported by the data.

The procedure consists of twe steps. First, two measuves vhich contain
information relative to the shape of a distribution, the coefficients of
skewness and kurtcsis, are used to make preliminary selections of candidate
distributions. The candidaies are then tested to sce whether any should be
rejected on the basis of a cignificant statistical deviation between rhe
expcrimental data and the distribution being tested. The approximaticn to
FLIS(Q|S) is cliosen from those distributions which pasced the test. However,
it is not possible to state whether any one distribution which passed the test
1s better than any other.

The coefficients of skewness and kurtosis are related to the kth central
moment of a random variable where k = 1,2,3,¢ - -, let the awcan of the randen

variable I. be denoted by m The EEE‘EEﬁEEiL moucnt of 1. is defined to be

L
W= E(L - m )] (iren
k L
where El ] denotes the statistical operation of expected vatue, By detinition,
Uq
Qq = NEY7 coefficient of skewness (G
42
— - L e ot ama
e —————— e - —a




and

The cocfficient of skewness is a measurc of the asywmetry of the POV, The
coefficient of kurtesis is a measure of the "peakedness'" or "flatness' of
a PDF in the central part of the distribution.

When cxperimentally determining F (2]s), it is assumed that each of

L|s
"ident ical" equipments is exposed to the same desired and interfering cignal. .

As explained in Section 3, the experiment proceeds by 1) holding the desived

signal average power at the constant value S = s, 2) gradually increasin,

average power of the interfering signal, and 3) recording the valuce of ¥ il
Lot

where NEMI(K) denotes the number of equipments experiencing ML with the aver.

power of the interfering signal equal to £. A typical result of the euxpcri- o
is shown in Figure 4. Let Qi denote the value of the intcriecrcince aveor.ayv
power at which the i—gl equipne.t reaches its performaunce threshold., An ualiice.

estimator of the mean m is given by

Z -
te~—12Z
>

Ei =

1

Similarly, unbiased estimators of u2, u3, and M, are
+

1 N 2
Uy =¥ -1 'Z (Fy - m) s SN
i=1
N
—= N Y _—3 1
M TwTDE D L m) R
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and
N 4 2
- N2 - 6N O -
UL = 5 z (Qi - mL) =y (:,)
(N - 1)(NT = 3N + 3) i=] N™ - 3N+ 3
(13.2)
Using (130)-(132) in (127) and (128), estimates of the coefficients of skewncss
and kurtosis becowme
"
_ 3 .
BT 133)
H2
and _
U
3 = 4 . 1134)
gt
2
Preliminary sclections of some well known distributions for approximating
Flls(ﬂis) are made by comparing the esti'nates,';\-;3 and'aa, with the known values,
oy and ab, of the various distributions under consideration. Those distribution:
for which a reasonable match exists become candidates for further consideration.
In general, the PDF's of the weil known distributions contain two or more para-
meters for which numerical values must be determined in order for the distribuvri o
to be completely specified. Thecee parameters are assumed to be chousel such that
the mean and variance of the distribution equal, respectively, the simple mean,
— . A — . .
m and the sample variance, (01) = ly- Therefore, with respect to the wmean
and variance, there is no loss in generality by considering the standardized rondon
variable
L -lﬁ
X = ——?;——: (137)
L
— - - - [, S
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re

where the variance ot Loic denoted by o0 =0 00 T stoandardized ronoon varios b

X, has zero mean and unit voriance. It can be shown that the coefficiente o
skewness and kurtosis are invariant under standavdization of the randon varisl le.
In other words, the distributions for 1 and X, recpuectivelyv | have the sane
numerical values of 03 and 04. For the purpose of comparivg the shpes of the
various distributions, it is convenient to work with the standardized rendon
variables. Analytical exprescions ror PDF's whose randonm variables have boen
standardized to zero mean and unit variance ave tabulated iu Appendix € aleng
with their coefficients of skewness nd kurtosis.

Having selected a group of possible distributions for approximating.

(]s) on the basis of comparing a and a, with y and ,

FLIS , respectively,

it is then desirable to perform a "goodness of fit' test on vach candidatc
distribution. This cnables a distribution to be rejected whien o significant
statistical deviation exists between the experimental data and the distirilocion
being tested. Even though a distributicn is not rejected, it cannot be accepted
with confidence. 1In addition, if several distributions are not rejected, tie

goodiness of fit test cannot be used to accept one distvibution over another.

The best that can be said regarding distributions which pass the test is that

they were not rejected. The goodness of fit test prevents acceptance of a divtri-

butjon which is likely to make a poor approximation to FI,S(T{S).

N, the number of "identical' equipments emploved din the esperiment, determing,

which poodrness of it test to use. For small values of N (i.c., N < 30, the

. . 2
Kolmogorov=Smirnov test is suvgested., On the other hand, the o test is

preferred when N is laree (Loe., N = 30).

Case 1 = Gral? N (N« 30): Once again, it is convenient to work with stoandave -




’_""'-""""""-—“M———-—-.-—_.__._1
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distributions having zero mean and unit variance. With respect to the data, the

_ — 2 . i
sample mean, m is given by (129) while the sample variance, (GI) =\, is

given by (130). The experimental data is standardized according to the relation

X, = — 3 i=1,2, ..., N. (136) |

Denote the CDY of the standardized distribution to be tested by Fx(x). Analytical
cupressions for various standardized CDF's are tabulated in Appendix D.

The Kolmogorov-Smirnov test is presented here without proof. It proceeds
as foellows:

1) Standardize the experimental dara by uvilizing (136).

2) Obtain ananalytical expression Fx(x) for the distribution under test,
(Appendix D nay be of some value in this regard.)
3) For cach experimental data point, evaluate FX(xi)'

4) Construct an experimental standardized CDF by usii: the relation

(137)

where NFMI(Qi ) denotes the number of equipments experiencing EMI with the averarpe
- +

power of the interfering signal equal to a value just slightly larger than ¢, .
4

The random variable XE denotes the experimental data. The experimental CDF haco

the shape ¢f a staircase function such as shown in Figure 4.

5) TFind the maximum distance given by

NEMI(Qi )
D = max F (K ) - _____i_ (] 38)
max i X'i N .
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6) Asslen a nuaerical value to the conditional proebabil ity wirich

is defined to be

a = P (rejecting distributionldistribution is a suitable approziaacioag.

i
This probability is known as the signiticance Jevel of the test.
7) Refer to the Table in Appendix L. Find the tabulated valoe corre. s

to the applicable sample size, N, and significance level, o, BDenote the ¢

value by Dq.
N

8) Reject the distribution if D > D%,

max N

"identical cquipments are used in the expoerivoat for

Example 7: Assume 10

determining F (i]s). The results of the experiment are summariced in 1.0 1

L{s

The sample mean is given by

1

(@]

EL“EIB i=1011.1 mw.

11
>

i=1

Tac sample standard deviation is given by

10
— 1 — . 2.1/2
o= I35 izl (5 - m)°) = 68.48 nw.

Therefore, the standardized data are obtaincd using

li - 101i.1

1~ 7 68.48

i i

the coefficicnts of skewness and kurtosis. Since Xy has zero mean and unid

variance, it

v 3 4
x, 1s tabulated in Table A along with X and x_,  which are necded in copraet s

(1




follow., titat

10
¢ 1) W S .
oy (9)(8) iil xi 0.406 (143%)
and
10
— (100) - 4 (51 )
a, = ot X, = === 1,532. Tan
COan b N TGy \

In Appendix €, the Weibulld distribution is the only distribution for which
negative values of 13 appear.  Likely candidates are those special cases for
which | = 4, 5, 6, 7, and 8.

lLet us test the Weibull distribution for which # = 4. From Appendix D,




/
(x 4 3.504)"

it is o ceoen that

Y‘(x) = |1 - e } u(x + 3.5C4). (145)

Values of Yx(xi). P(X xi), and 1FX(xi) - P(XE i_xi)! arc alsce tabulated in

E -

Table A, Observe that

= 0.1256. (146)
max

Assume the sipniticance level is set at o = .05. Referring to Appendiz E,
it is found that

05 \ -
iy = 0.409. (147)

. .05 . . . . . .
Since D < DlO , the distribution is not rejected.
max

Cave 2-Large N (N > 30):For large values of N, the & test is preferable. It

. " 2
is presented heve without prool. The 37 test procecds as {follows:
1) Standardize the experimental data by utilizing (174)

2) For the distribution under teust, divide the range of ¥ into 10 cells

such that it is equally probable X will fall inte each cell. In the statistical
literature, each cell is referred to as a decile. The decile beeniarics for
some standiardized CDF's are tubulated in Apperdix F.

3) Count the number of standardized data, xi, contalved withiin each ce'l.

. . tl
Denote tire number of data in the Kt coll by n k=1, 2, ..., 10.
3

k;
4) Compute the quantity Pk definced by

P =

. s k=1, 2, ..., 10. (148)

"k
N




5) Evaluate the statistic

xX“=N. ) —. (149)

6 Let M denote the number of parameters in Fx(x), the CDF under test, whosco
numerical values must be determined in order for the distribution to be compictelyv

specified. The degrees of freedom are givea by P = 10 - 1 - M =9 - M.

7) Assign a numerical value to the significance level, x, defined by (139:.
8) Refer to the Table in Appevdix C. Find the tabulated value corres-
ponding to the applicatle degrees of freedom, P, and significance level, .
Denote the tabulated value by (xz):.
9) Reject the distribution if XZ > (xz):.
The above discussion is applicable when N > 100. Should 30 < N < 100,
step 2 should be modified such that the range of X is subdivided into 5 equilly
prcbable cells. The cell boundaries can be obtained frem Appendix F by selectiii:

the 5 intervals (xo, xz), (x2, xa), (xa, x6), (x6, x8), and (x8, xlO)' The

statistic equivalent to that in step 5 is now given by

2
5 (P ~-0.2)

[
n
[}

k=1 0.2

Finally, the degrees of freedom specified In step 6 are now given by
P=5~-1-M=4 - M. All other steps remain the same.

Independent of whether 10 or 5 cells are emploved, best results are

obtained when the number of data points in each cell exceeds three.




Pienticat cquipments are usced in the experinent for

tor this valae ot N, the Kolmuporov=Smirnov test show:

9
< . . N .
be used.  However, the 7 test will be applicd. The small value of 30 ban been

specified in ordoer to make the example more tractable. The results of the

experiment ave sunmarized in Table B, The sawple mean is piven by

o= L . = 1007.3 .
IL 20 i;l i /3D MW, N

The sample stendard deviation {s given by

AR Y ORISR ER (150
" - M £ = 47 nw . AR
L 19 5 1 T

Therefore, the standardized data are obtained by using

2, -~ 1007.35
i 49,51

. . . - 3 4
X, s tabulated in Table b along with Xy and x, which rre needed in computio-
i
the coefficients of skewvmess and kurtosis. Since *{ has zero mean and unit

variance, it




TARY B




follows that

20
- _ __(20) 3,
®3 T {19y (18) 121 Xy -377 (154)
and
20
3 = 400) 4 _ (111 _
% T 19y (343) 121 g say = 1.945. (155)

With reference to Appendix C, it would be logical to select the Weibull dis-

tribution. However, let us test the triangular distribution. Because of the
small value of N, let the range of X be subdivided into 5 cells. Referring to
Appendix F, the 5 cells are given by (-2.45,-.900),(-.900,-.25)),(—.259,.259),

(.259,.900), and (.900,2.45). The standardized data in each cell, n for each cell,

Pk,and (Pk - 0.2)2 are tabulated in Table C. The x2 statistic becomes,
TABLE C

Cell Number 1 2 3 4 5
Cell intervals (-2.45,-.900) (-.900,-.259) (-.259,.259) (.259,.900) (.900, 2.45)
standardized 3,4,6,7
data in each 8,9,12,20 1,2,11,14 13 10,17,18,19 5,15,16
~ell

nk 4 4 1 8 3

Pk 0.2 0.2 .05 0.4 0.15
(Pk - 0.2)2 0 0 .0225 .04 .0025

according to (150),

(156)
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Since the triangular distribution contains two parameters, the degrees of
freedom are given by

P=4 -M= 2, (157)
Assume the significance level is set at o = 0.05. Referring to Appendix G,
it 1is found that

2.0.05
Xy = 5.99. (158)

2 2.0.05
Since X > (X )2 , the distribution is rejected.

R I - e e . - N




10, CONCLUSTON AND SUCCESTIONS FOR FULURE WORK b

An inherent feature of many EMC problems is the rarlomne o associated
with the desired signale, interfering signals, and equipments involved. In

this work a probabilistic approach is proposed which introduces the followin

concepts:

1) FL‘S(i!s), the given signal and interfercnce EM1 probability
function,

2) CI:S(iIS)’ the given signal and interference EMC probability
function,

3) Cs(s), the given signal EMC probability function,

4) CI(i)’ the given interfercnce EMC probability function,

5) C, the EMC probability (also referred to as the compatibility),

6) Xs(i), the EMI rate function

7) Y, the compatibility margin.

Several cxamples illustrating the interrelationships belween thesc concepts
~r2 presented.

For problems where a deterministic approach is inappropriaste, the
probabilistic approach can provide an improved EMC model. Tu addition., bv
utilizing statistical parameters, statistical macromcdels can be dovieloped
which simplify the characterization of complex signals and cquiprento.  Gia
approach appears to be especially well suited for the I modelineg o o0 v
circuits. DBecause of their tremendous complexity, it is neither donivable oo
possible to carry out an exact circuit modeling and anadvsis in order to
determine FMC.

Central to the probabilistic appreoach is the experimental determinat icn

Fllq(Q}s). A method for determining a suitably larpe value or N, (he noeber




of equipments to be used in the experiment, is presceated.  For analytic ol

reasons, it is desirvable to approximate the experimentally determined

(”ln) by a well koown distribution.,  Some statistical technioue 1o
1 - .

Fiis
rejocting candidate distributions not supported by the experiment il Jata
are discussed.,

it Is recommended that randemness associated with microcircuit suaeer -
tibility be investipeted. To what extent is the susceptibility level, I,
random 7 10 the susceptibility level is random, can its PDF be determinod?
Azsuming the PDY is known, can the probability of FMC and/or EMI be succs ss-
fully determined? To develop answers to these questions, it is sugpes:ed it
the random susceptibility of the 7400 TTL NAND gate, a siuple inteprated
circuit, be studied experimentally. If the study is concluded sucecessfully,

more complicated microcircuits should then be investigated.
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APPENDLIX A '

C]ls(i!s) AND A _(i) FOR SOME COMMON PDF's

In this appendix, given le‘(Rfs). C (1[9) and Xs(i) are derived using th

Ils i
relations
14¢]
s (s = lsyat
(‘1|S(1|") J fl,ls(;"b)d
i
f (1]s)
S
A (1) = CL (1 oyt
1 e 13)
Ils
1. Uniform Distribution
L a~-b< il a+tb
2b ’ - -
s =
fL]S(i'”) 0 » otherwis=e
( 1 SR BRI
Coililsy = L[xOh—" P~ b <t u4b
1]s Zb oo -
Q ,at b
———~-*1'--‘* 4 - b 1« a4+ b
a+ b~ i '
AS(i) = l 0 , otherwise
{
{
| ]
§ f
fus (L1S) ! |
i I
-~ | f
| 1 1
57 |--- — i ! *
2b | ] )
. S T R
OV a-b a ot a-b g o+b
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2. Triangular Distribution

(._S‘z_d_zb. , a'bikf_
b b
- + b
f sy ={ 22 432b oy
Lis'" b2 b2 - "=
| 0 . otherwise
f 1 » i<a-b
l_%ll_—..(bﬂ_—_bl_)_]z’ a - il.ia
ey =
| Crystils) 1iat+b -2 fcicasn
; 2 b r 2L
* \ 0 v a+b<i
r L t=fa-b) 3 a-b<ic<a
26" - {1 - (a - b))
2
A1) = a+b-1 aiicaty
0 otherwise
\
As(i) I
f .« (2lS) st
LIS I
O :
| 3____ |
| b i ]
1 ! 1
Ol ab a i Ola-b a a+




3.

Consdan Ditoibation

. S1ey - oy i a o f e (
(,1}5()(«) erfof 5 Y, vrfe(x)

A (i) = = Seen)
“

.

i -4
erfe(=-="
‘

CI!S (ils)

===l

10

VI

Ol

Q= —
o

e e TSN

——
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4. log-Normal Distribution

2
_ {1n(2 - b) - 1n a)
2
R x u(i - ®)
.k ¥2T 0(L = b)
- G[1In(% —lbz,bln a, ) oL -~ b), b >0
| 1 , 1< I, & = b
C”S(ivs) = u(? - b)=
orfe ( A In b) , b < i 0, x <b
a
s} s i <b
'\S(i) =
Clindi ~ by, in a, ¢!} N
e e
i - urfc(— 1n ——)
o a
(£1s) .
LIS ils .
CIlS( ) As (1)
i
%Vara - T /) T~ -

- o2ra

ve |--

—

+b b a+b

o

/
crr—f—
L _

Ol b o+b )4 0




5. Laplace Distribution

Asli)

o a -af% - b
fLIS(Q}b) =7 ¢
~a(b - 1)
( 1 % e » 1<
C . .(ils) =
Lis L mald - v
5 e s b < i
e 1 <b
26 alb - 1) - -
A1) =
s a , b < i
i
FLis (21s) Cps Hitsd
a9
2
o)
— -— \ﬁ'—"-‘——-——-o«
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6. We U_)il‘}_ll};d ribution

: Lo -af
a
fL,S(US) = ('g) (¢ =P -2 e L
1 » 1 < ¢
cI:S(ifs> = .
-4 -c)
e 4 . ¢ < i
O R IR CHR S Lk B SR
fuc,“ls) ‘ .
C. (ils) S (i) (assumes L>
1S s(i




~ \7 7"_}')
| 1 .
fl“( Y o= - ¢ a(s = )
;ln.‘ 1
1 y i C
Crpshs) = =)
a
€ , i«

A = u- o
3 a

t,s s Cpyg (its) Agli) ¢

/




_bn
5 d
'l 5(’ 2D =i~ (- ¢) ¢ c{r - o
) , i ¢
[¢ (L s =
1S 2
- , PR
a
e
(i) =~§ (1 - ¢) u(i ~ )
- |
ce
{\ :
|
| | — l - L
0 ¢ c+/L £ 0 c i ) ¢ a



7. tauchv Di-tributjon
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S.  Camma Distribution

S i
a b
(2 - <)
f (5ls) = —— - e u(l - ¢), a -1, h G
Lis T
Fo_ L@+ !
b . f'
l—wf(a T l)h , c <1 i
|
C, 1 (ils) =
)
1is 1 s i<c
i-c
b
a
A (1) = a+1(i—:C) : o
€ b M@+ =T, (a+ D)
b
M'a) = } 2 1 e—t At (Gamma function)
0
.- a-1 -t .
1b(a) = r t e dt (Incomplete Camma function)
g
~ . i
fus Gis) (assumes a>1) Cpg Gts) As G (assumes a1
a - | o e e —— .
($1*/[olta] === |

ol ¢ ce+ab £ Ol ¢ ctpla+O8Y 1« Of ¢ B
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i
1
9. Beta Distvibution !
. Ly b
S & M Bt G ~'—)—, TRy 8 € L FSdy dee=2k 0 0, a2
B(a 4+ 1, b+ 1) (d-c)
f (cle)y -
llb ’ [ , otherwise
1 , 1 <¢
Bi—___ @+ 1, b+ 1)
(Ill\.(ils) = 1 - 2k —_ , ¢ <i<d
i B(a + 1, b + 1)
\ 0 , d < i
(1 - (@ - ;
‘__’7;'4"-6—;"’1—&'—" Tt T T T T T T T e e e ’ ¢ -1 G
(2Kk) (Ba+ 1, 64 1) =B, _ (a+ 1, b+ 1))
o
(D
[¢] , otherwise
T _ N
B(a,h) = I & 1 1 - t)b 1 dt = T(a) r(b) (Beta function)
0 r{a + bv)
€ a-n b -1
B(‘(a,b) = f e - (1 -t) dt, 0 < C <1 (Incorplete Beta function)
0
fo {(21s) ;
us Ag (i)
1
a® bP 1
Tab)” i 1
Blasl, b+ 1)d-c)arb) \ |
ot .
0 ¢ d i ol ¢ d i
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Special Case of the Betua Distribution

9.1 a =b =0 results inthe uniform distribution

TR c <R <d
tLis®le) = *
R otherwise




APPLNDIX B

EXAMPLES OF ANALYTICAL UEXPRESSLIONS YOR CS(S)

Given fL|S(Q|s) and f[(i), the piven signal EMC probability function mav t.

evaluated using

CS(S) = J clls(i!s) fl(i)di

= r»f sy dy
Jo Y|S(y|b) Yy

where CIIS(iIS) and leS(y{s) are determined from (3) and (53), respective 1w,

1. leS(le) Uniform and fI(i) Uniform

l o 4 < U < o
3a s —as< L cs+a
f (le) =
L!S 1 0 s otherwise.
‘211; s m-~-b<i<m+0Db
fI(l) =

0 s otherwise.




Case 2: a < b

1 -

C.(s) =1

(s + a4+ b - m)2
8ab

{s = (m +b + a)]z

8ab

1 - Is = 4+ )’

8ab

m

jA

1

m

a

bL

a

IA

S

A

[

m+ b -

| A

A

m + b +

| A

T <m - b+

com4 b o+

m - b +

a

a




a5

3 e e aen o

vT:+b+a) S

Y (m-b-a) {(m+b-a)

Cs (s) (Case2)

(=a/2b f=mm m - - - - — ;
|

2= — = — e ——— —— - ! :
!

0/20 e et e e e l :

Je { 1 J |

[¢ (m-b-a) {m-b+a) m {(m+b-a) (m+b+a) 3




2, f, lt;('\.l%) Gaussian and fl(i) Gaussian

2
(v - s)_
1 20 2
fsler =
{
2
4 -m-
. 262
f) = ——— e
V2T 8

= m

C (8) = crf (e )
3 /Oz Y

fus (“S) fI ( i )

|
N Sewrd |T— —
/

i\
mk—-—-——v

Csls)
|
| | T v s T e =
: 172 ==
I - !
0] m




3. f]JS(.‘L:s) Weibull and fI(i)

67

Weibull (identical shape parameter, K)

iy o KK =
fL{s("’”) s
oL KK -1
) =2

Co(s) = ——

. rLlS (0

Ek
T e
e Tou(l)
K »
1
"
[ u(il

{Note that (?g(s)

fr (i)

is independent

of K)

Cs(S)

pre o e m—- —— - - - ——

-— pe . -

[mo-w] %

[}
! 172 - -
! !
i 1
0 m s
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4. fL;S(iis) Uniform and fI(i) Gaussian

‘2]"; » s - a ilil“"a
f ;_(i‘s) -
kIS 0 ,  otherwise
_.&'_Eﬁ
1 262
fI(i) - e
VIt 8
o) ert (D L SIS g e 2g )
_ (s - m)z + az
2
-8 e 28 sinh [i’.%!').]
a/ﬁ‘ 6
'LIS (Z1s) fI(l) Cs(S)
A

Jors | T 7

- m o - o —

83



! ib i miforn
5. leS((.s) Weibull and fl(” Uniform

_Si_:_i)_lf
a
‘ K K -1
| == (2 - e -
EL]S(MS) a( s) e u(d - s)
L
26 " m~b<i<m+b
fl(i) =
0 , ctherwvise
) ,
al/K © (_l)n [<m+b-s)nx+l_(m-b-s)m\+l] N
25 n'(nK + 1) 1/K 1/ - T
n=0 a a
s+b-m a/% T - w4+ b - s.nk 4 L
Cgle) = 2b YT L WK + 1) TR r@obistmed
n=0 a
1 ,m+b_<_s

fus (is)
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fLJS(&js) Weibull and fl(i) Gaussian

O
a
£ 15219 X a-of Tt e w(i - s)
2
_ 4 -m
262
fI(i) - e
/2T 3
2 xK x2 s -
_ SS ‘zm) ‘(—a-+ ;'6—54' 62 x)
- e
CS(S) = erf (§~S—E) + ot e 28 J e dx
V2T & 0
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APPENDIX C

ANALYTICAL EXPRESSIONS FOR STANDARDIZED PDF's AND THEIR COEFFICIENTS OF SKEWNESS

PDF

Uniform

Triangular

Gaussian

Log Normal

Special Cases
of
Log Normal

AND KURTOSIS

ANALYTICAL EXPRESSION %
1
, Y3 <x <3
fx(x) = 73 - 0
0 , V3 < )«
el - B<x<o
6  v6’ -
X 1
fx(x) -<—€+%,0_<_x</6' 0
SR » VB < x|
%2
£, (x) . T 0
T
_ !ln!x-bz—lnalz
2
fx(x) = L e 2C u(x-b)
¢/IT(x - b)
2 2 2
a= (¥ (€ - 1)771/2
2
b= -l - 17172
C=1/4 0.778
C=1/2 1.750
C=3/4 3.263
C=1 6.185
C= 2 414.36

Fo)

1.8

2.4

2 2

€€ - 1)+ 2) (%S4 20

+3e -3)

4.096

8.8568

26.54
113.9
9.22 x 10
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PDF ANALYTICAL EXPRESSION % %
1 -7 |x] 6
Laplace tx(a) ~ e 0
- o=yt
f oy = B B -1 * -
fx(X) 5 Y) e ulx -~ Y)
2 2 1., £
Weibull a=(ra+p -ra+pl 2
1
y=-afra+ -;-)
g = 0.5 6.62 87.72
g= 1 2 9
g= 2 0.63 3.24
g= 3 0.16 2.73
Specisl Cases g = 4 -0.09 2,76
of B= 5 -0.26 2.91
Weibull B= 6 -0.39 .09
B 7 -0.48 3.28
g= 8 -0.56 3.48
B= 9 -0.63 3.69
g = 10 -0.68 3.92
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PDF ANALYTICAL EXPRESSION % 24
X - c b
gx-cz’ ) ( ) i
£ (x) = e u(x - ¢ ;
X re et :
-1
Gamma b= (a+ l) 2 2 3:++13
Va+I

c=-a+ 1/

a= 1 1.41 6

a= 2 1.16 g

a= 3 1 <

a= 4 0.89 4.2 |

Special Cases a= 5 0.82 4 4
of a= 6 0.76 3.86
Casma a= 7 0.71 3.75
a= 8 0.67 3.67

a= 9 0.63 3.6 {
a =10 0.60 3.55




Uniforn

Triangular

Gaussian

ANALYTICAL EXPRESSIONS FOR STANDARDIZED CDF'a

ANALYTICAL EXPRESSION

0 : X <=/
Fy(x) = -L+~;- s, -/FT<x</T
2/7 - -
1 » "T<e<x
[ 0 » x<"|’g.
ﬁ+L+l -8 < <0
127" 2 : x
F (x) = 2
x -:_2+L@+% , 0<x</T
1l » m:!
L
. g2
!’x(x) = erf(x) - r e 2 de
% LA
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Log Normal

Special Cases
of
Log Normal

Gamma

(2]
[ ]

(]
[ ]

[¢]
L}

[¢]
[

(2]
"

1 X -
?x(x) = erf( ° In ( =
am= [ec (e

b = -[e° - 1]

1;

2;

Fx(x) =

1/4;

1/2;

3/4;

ANALTYICAL EXPRESSION

b)]u(x - b)

2 2 -1/2

-1l

z

Fy(x) = erf(4 ln @L%%%igég)]u(x + 3.938)

x + 1.876
1,656 YJu(x + 1.876)

Fx(x) erf(2 1n (

x + 1.151
0.869

Fx(x) erf[%-ln ( YJu(x + 1.151)

Fx(x) = erf(in (

YJu(x + 0.763)

= 1 x + 0,137
Fx(x) erf[2 1n ( 00185 YJu(x + 0.137)

r (a + 1)
iva+lx+a+1) u(x+m)

F(a + 1)




srecdsl Cases
l',‘f

sanmna

Weibull

ANALYTICAL EXPRESSION

T (1)
a=0; F(x) = KF-‘(.I; u(x +1) = [1 -
r . (2)
a=1; Fx(x) - Vi‘krtzi u(x + v2)
r 3
a= 2, Fx(x) = /3‘xrt3; uix + v3)
T, (4)
a=3; Fx\x) = 2hrt4§ u(x + 2)
r (5)
a = 4; cx(x) L) xr?ﬁ? u(x + +9)
8
_x -
Fe(x) = [1 - e o Julx - v)

= 2, 2 1,,-8/2
a=[T(1+ B) rq + B)]

Y= -al’ls i1+ -é'—)

e—(x + 1)

Ju{x + 1

9/
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Special Cases
of
Weibull

ANALYTICAL EXPRESSION

Fx(x)

; Fx(x)

H Fx(x)

; Fx(x)

; Fx(x)

(1

(1

{1

[ -

{1

/2

Ju(x + 0.447)

_(x + 0.447)}
0.473

-(x + 1)
e Ju(x + 1)

 (x +1.913)2

e 4.66  1i(x + 1.913)

(x4 2.759)°

e 294445 i(x + 2.759)

(e + 3.566)"

239.14  i(x + 3.564)

-t .
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TABLE FOR KOLMOGOROV-SMIENDY TisT (6]

Ry

Sample size Significance levei (@}
(N) .20 .15 .10 .05 .C1
1 .900 .925 .§50 973 -995
2 684 .726 776 842 .324
3 .565 .597 B2 .70s A
4 494 .525 LSh4 L6234 V3¢
5 <446 474 <510 563 AR
6 410 .436 Y .5 ABLE
7 .381 .405 428 L48E -577
8 .358 .381 .41) <457 2563
9 .339 .360 .388 432 .31%
10 .322 .342 .368 4083 LB
11 .307 .326 35z .331 458
12 .295 -312 338 .375 450
13 .284 .302 .325 <361 433
14 274 «292 .314 .349 418
15 .266 .283 .304 R | <504
16 .258 274 .265 228 .39
17 .250 .266 .286 .318 -380
18 244 .259 .278 .309 .270
19 .237 .252 .272 -30% . 361
20 .231 . 246 .264 .294 .352
25 .21 .22 .24 .264 .32
30 .19 .20 .22 <242 .29
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MISSION
of
Rome Air Development Center

RADC plans and executes nesearch, development, test and
delected acquisition programs in support of Command, Control
Communications and Intefligence (C31) activities. Technical
and engineerning suppont within areas of technical competence
48 provided to ESD Progham Offices (P0s) and other ESD
elements. The principal technical mission areas are
communications, electromagnetic guidance and control, sur-
veillance of ground and aerospace objfects, intelligence data
collection and handling, information system technology,
Lonospheric propagation, solid state sciences, microuwave
physics and electronic reliability, maintainability and
compatibility.







